Mixed conditional logistic regression for habitat selection studies
نویسندگان
چکیده
منابع مشابه
Use and Interpretation of Logistic Regression in Habitat-selection Studies
Logistic regression is an important tool for wildlife habitat-selection studies, but the method frequently has been misapplied due to an inadequate understanding of the logistic model, its interpretation, and the influence of sampling design. To promote better use of this method, we review its application and interpretation under 3 sampling designs: random, case–control, and use–availability. L...
متن کاملRobust Inference from Conditional Logistic Regression Applied to Movement and Habitat Selection Analysis
Conditional logistic regression (CLR) is widely used to analyze habitat selection and movement of animals when resource availability changes over space and time. Observations used for these analyses are typically autocorrelated, which biases model-based variance estimation of CLR parameters. This bias can be corrected using generalized estimating equations (GEE), an approach that requires parti...
متن کاملFeature subset selection for logistic regression via mixed integer optimization
This paper concerns a method of selecting a subset of features for a logistic regression model. Information criteria, such as the Akaike information criterion and Bayesian information criterion, are employed as a goodness-offit measure. The feature subset selection problem is formulated as a mixed integer linear optimization problem, which can be solved with standard mathematical optimization s...
متن کاملBias reduction in conditional logistic regression.
We employ a general bias preventive approach developed by Firth (Biometrika 1993; 80:27-38) to reduce the bias of an estimator of the log-odds ratio parameter in a matched case-control study by solving a modified score equation. We also propose a method to calculate the standard error of the resultant estimator. A closed-form expression for the estimator of the log-odds ratio parameter is deriv...
متن کاملVariable Selection for Multivariate Logistic Regression Models
In this paper, we use multivariate logistic regression models to incorporate correlation among binary response data. Our objective is to develop a variable subset selection procedure to identify important covariates in predicting correlated binary responses using a Bayesian approach. In order to incorporate available prior information, we propose a class of informative prior distributions on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Animal Ecology
سال: 2010
ISSN: 0021-8790,1365-2656
DOI: 10.1111/j.1365-2656.2010.01670.x